Live Silent Think Brilliant......Hardwork gives you Success......ఓర్పు అత్యున్నత నేర్పు.......

Friday, August 28, 2020

Euclid Division lemma- Finding HCF of two numbers by Euclid division algorithm-10th class- mathematics

Math for class 10
Euclid Division Lemma

For any pair of positive integers a and b (a>b), there exist a unique pair "q and r" such that

a=bq+r,  0≤ r <b

Dividend(a)= Divisor(b) x Quotient(q) + Remainder(r)

This is known as Euclid Division Algorithm

For example:
Two positive integers 24 and 9

    9 ) 24 (2
         18
    ----------
         06
    ----------
∴ 24 = 9 x 2 + 6

One more example:

Two numbers 34 and 6

    6 ) 34 (5
         30
    ----------
         04
    ----------
∴ 34 = 6 x 5 + 4

✶Euclid division algorithm is used to find HCF of two numbers
✶ HCF of two consecutive numbers is 1.
✶ HCF of two consecutive odd numbers is 1.
✶ HCF of two Prime numbers is 1.
✶ HCF of two consecutive Even numbers is 2.

Process to find HCF by Euclid Division Algorithm:

1. Apply Euclid's division algorithm to a and b, to find the values of  q and r
        
            a=bq+r

2. If r = 0, "b"(Divisor) is the HCF of Given a and b

3. If r ≠ 0, Apply Euclid's division algorithm to b and r

4. If r = 0, Divisor(r) is the HCF of Given a and b

5. If r ≠ 0, Apply Euclid's division algorithm to divisor and remainder

6. Continue the process till the remainder is Zero

7. Divisor at last stage, will be the HCF of Given numbers

Ex.1: Finding HCF of 96 and 72

Solution:

Apply division algorithm to 96 and 72

        72 ) 96 (1
               72
          ----------
               24
         ----------
    ∴ 96 = 72 x 1 + 24

Apply division algorithm to 72 and 24

        24 ) 72 (3
               72
          ----------
               00
          ----------
    ∴ 72 = 24 x 3 + 0

Remainder is Zero
So divisor(24) is the HCF

    ∴ HCF of 96 and 72 is 24

Ex.2: Finding HCF of 145 and 30

Solution:

Apply division algorithm to 145 and 30

        30 ) 145 (4
               120
           ----------
               025
          ----------
    ∴ 145 = 30 x 4 + 25

Apply division algorithm to 30 and 25

        25 ) 30 (1
               25
          ----------
               05
          ----------
    ∴ 30 = 25 x 1 + 5

Apply division algorithm to 25 and 5

          5 ) 25 (5
               25
          ----------
               00
          ----------
    ∴ 25 = 5 x 5 + 0
Remainder is Zero
So divisor(5) is the HCF

    ∴ HCF of 145 and 30 is 5

Text Book Question:
Finding HCF of 900 and 270
 
Solution:
Apply division algorithm to 900 and 270

       270) 900 (3
               810
           ----------
               090
          ----------
    ∴ 900 = 270 x 3 + 90

Apply division algorithm to 270 and 90

        90) 270 (3
              270
          ----------
              000
          ----------
    ∴ 270 = 90 x 3 + 0

  Remainder is Zero
So divisor(90) is the HCF

    ∴ HCF of 900 and 270 is 90

Find HCF of following by using Euclid Division Algorithm. 
1. 240 and 100
2. 350 and 250
3. 680 and 500
4. 175 and 120
5. 144 and 108