Live Silent Think Brilliant......Hardwork gives you Success......ఓర్పు అత్యున్నత నేర్పు.......

Monday, August 31, 2020

Square of a positive integer is in the form of 5P, 5P+1, 5P+4 - 10th class-Mathematics- Real Numbers-Exercise-1.1-3rd Problem-Euclid Division Algorithm

Math for class 10 Real Numbers-Exercise-1.1-3rd problem(Model)

Before going to learn the Proof, We know the following
Euclid Division Algorithm
For any pair of positive integers a and b (a>b), there exist a unique pair q and r such that a=bq+r,  0≤ r <b

☆ (a + b)2 = a2 + 2ab + b2

☆ (a - b)2 = a2 - 2ab + b2

----------------------------------------------------
☆Show that the Square of a positive integer is in the form of 5p, 5p+1, 5p+4.

Proof:
By Euclid Division Algorithm, we have

Pair of positive integers a and b (a>b), there exist a unique pair q and r such that a=bq+r,  0≤ r <b

Let "a" be the positive integer and take b=5

∴ a=5q+r,   0≤ r <5

a=5q+r (values of r may be 0 or 1 or 2 or 3 or 4)

Do Square on both sides

(a)2=(5q+r)2      [apply (a + b)2 = a2 + 2ab + bformula in RHS]

a= (5q)+ 2(5q)(r) + (r)2    [Here a = 5q and b = r ]

[ Substitute different "r" values]

Case-i: Take r=0

a= (5q)+ 2(5q)(0) + (0)2
  
a= (5q)+ 0 + 0

a= 52q2

a= 25q2

a= 5(5q2

a= 5P          (Here  P= 5q2  )

Case-ii: Take r=1

a= (5q)+ 2(5q)(1) + (1)2
  
a= 52q+ 10q + 1

a= 25q+ 10q + 1

Factorize first two terms of RHS

a= 5 x 5 x q+ 5 x 2 x q + 1

Take 5 as Common from first two terms
 
a= 5 (5q+ 2q) + 1

a= 5P + 1    (Here  P =  5q+ 2q )

Case-iii: Take r=2

a= (5q)+ 2(5q)(2) + (2)2
  
a52q2 + 20q + 4

a= 25q+ 20q + 4

Factorize first two terms of RHS

a= 5 x 5 x q+ 5 x 2 x 2 x q + 4

Take 5 as Common from first two terms
 
a= 5 (5q+ 4q) + 4

a= 5P + 4    (Here  P =  5q+ 4q )

Case-iv: Take r=3

a= (5q)+ 2(5q)(3) + (3)2
  
a52q2 + 30q + 9

a= 25q+ 30q + 9

Factorize first two terms of RHS
And write 9 as 5+4

a= 5 x 5 x q+ 5 x 2 x 3 x q + 5 x 1 + 4    [ 5=5 x 1]

Take 5 as Common from first three terms
 
a= 5 (5q+ 6q + 1) + 4

a= 5P + 4    (Here  P =  5q+ 6q + 1)

 Case-v: Take r=4

a= (5q)+ 2(5q)(4) + (4)2
  
a52q2 + 40q + 16

a= 25q+ 40q + 16

Factorize first two terms of RHS
And write 16 as 15+1

a= 5 x 5 x q+ 5 x 2 x 2 x 2 x q + 5 x 3 + 1    [ 15=5 x 3]

Take 5 as Common from first three terms
 
a= 5 (5q+ 8q + 3) + 1

a= 5P + 1    (Here  P =  5q+ 8q + 3)

From above five cases, we to conclude that

"Square of every positive integer is in the form of 5P or 5P+1 or 5P+4"
 ----------------------------------------------------------


Model Problems for Practice:

1. Show that the square of any positive integer is in the form of 3P or  3P+1 using Euclid Division Algorithm.

2.  Show that the square of any positive integer is in the form of 4P or 4P+1 using Euclid Division Algorithm.

3.  Show that the square of any positive integer is in the form of  7P, 7P+1, 7P+2 or 7P+4 using Euclid Division Algorithm.