Live Silent Think Brilliant......Hardwork gives you Success......ఓర్పు అత్యున్నత నేర్పు.......

Tuesday, September 1, 2020

Cube of a positive integer is in the form of 9m or 9m+1 or 9m+8 -10th class-Mathematics- Real Numbers--Exercise 1.1- 4th Problem-Euclid Division Algorithm

Math for class 10-Real Numbers-Exercise 1.1- 4th Problem
Before going to learn the Proof, We know the following

Euclid Division Lemma
For any pair of positive integers a and b (a>b), there exist a unique pair q and r such that a=bq+r,  0≤ r<b

☆ (a + b)3 = a3 + 3a2b + 3ab+ b3
☆ (a - b)3 = a3 - 3a2b + 3ab- b3
----------------------------------------------------
Prove that the Cube of a positive integer is in the form of 9m or 9m+1 or 9m+8(m is an integer)

Proof:

By Euclid Division Algorithm, we have

Pair of positive integers a and b (a>b), there exist a unique pair q and r such that a=bq+r,  0≤ r <b

Let "a" be a positive integer and 

Take b=3 (Because 9 is multiple of 3)  

∴ a=3q+r,     0≤ r <3

a=3q+r,  value of r may be 0 or 1 or  2

Do Cube on both sides

(a)3=(3q+r)     [apply (a + b)3 = a3 + 3a2b + 3ab+ b3 formula in RHS]

a= (3q)+ 3(3q)2(r) + 3(3q)(r)2 + (r)   [Here a = 3q and b = r ]

[ Substitute different "r" values]

Case-i: Take r = 0

a= (3q)+ 3(3q)2(0) + 3(3q)(0)2 + (0)3
  
a= (3q)+ ( 0 ) + ( 0 ) + ( 0 )

a= 33q3

a= 27q3

a= 9 x 3 x q3

a= 9(3q3

a= 9m          (Here  m= 3q3  )

Case-ii: Take r = 1

a= (3q)+ 3(3q)2(1) + 3(3q)(1)2 + (1)3

a= 33q+ 3(32q2)(1) + 3(3q)(1) + (1)

a= 27q+ 3(9q2) + 9q + (1)

a= 27q+ 27q2 + 9q + 1

Factorize first three terms of RHS

a= 3x3x3xq+ 3x3x3xq2 + 3x3xq + 1

Take (3 x 3) as Common from first three terms
 
a= 3 x 3 x (3q3q2 + q) + 1

a= 9(3q3q2 + q) + 1

a= 9m + 1    (Here  P = 3q3q2 + q )

Case-iii: Take r=2

a= (3q)+ 3(3q)2(2) + 3(3q)(2)2 + (2)3

a= 33q+ 3(32q2)(2) + 3(3q)(4) + (2)3

a= 27q+ 3(9q2)(2) + 9q(4) + (8)

a= 27q+ (27q2)(2) + 36q + 8

a= 27q+ 54q2 + 36q + 8

Factorize the terms of RHS

a= 3x3x3xq+ 3x3x3x2xq2 + 3x3x2x2q + 2x2x2

Take (3 x 3) as Common from first three terms
 
a= 3 x 3 x (3q3x2xq2 + 2x2xq) + 2x2x2

a= 9(3q6q2 + 4q) + 8

a= 9m + 8    (Here  P = 3q6q2 + 4q )

From above three cases, we to conclude that

"Cube of every positive integer is in the form of  9m or 9m+1 or 9m+8"
 ----------------------------------------------------------


Model Problem for Practice:

1. Use Euclid Division lemma to Show that the cube of any positive integer is in the form of  4m or 4m+1 or 4m+3.( for m is an integer)